

EliXir: a framework for Building e-business applications

Ammar Joukhadar
Information Technology Faculty, Damascus University

ammarj@scs-net.org

Abstract:

This paper presents an integrated framework that

allows us to build 3 Tiers application in just 2 steps

Specify and Deploy. This framework merges the power

of Model Driven Architecture (MDA), the simplicity of

Business Process Management Notation (BPMN), the

breadth of the web and the flexibility of Service

Oriented Architecture (SOA). Applications are

specified using UML and BPMN and can be deployed

on any platform.

Actually eliXir can be deployed on J2EE platform,

using MySql or Oracle as database, using Jboss or

BEA weblogic as application server and windows or

Linux as operating system.

1 Introduction

E-business systems are becoming more and more

complicated because they involve a large number of

functional and non functional constraints. USA spends

more than 250 billion USD per year for more than 175

thousand projects on which several million of people

work. But 30% of these projects fail before being used

and 50% of these projects cost twice the initial budget

[1][2][3].

There are three major factors that make e-business

system very difficult to build:

1- Requirements become more and more complicated

such as supporting a large number of users

distributed over several locations, supporting

different types of channels such as http, mail, fax,

SMS, mobile, web service, etc, delivering in

months rather than years, supporting different

types of non functional requirement such as

scalability, availability, security, testability

maintainability, reliability fail over, fault

tolerance, performance, safety, portability, user

friendliness, traceability

2- Meeting those requirements needs advanced

technologies, such as using technical frameworks

[6] [7], applying some standard design patterns [8]

[9], decomposing code into a set of modules,

applying modern design patterns (3 Tiers, AOP,

SOA, MDA[5], MVC, IoC, ORM, DAO, etc) [10]

[11], using generic programming techniques, or

using code generators.

3- These technologies increase the complexity of the

system, and depending on programmers

experience this may reduce the code quality

dramatically.

Reducing program complexity requires separating

the different aspects of the program which allows

programmers to concentrate on one aspect at once.

This can be made using frameworks. Current

frameworks have some limitations:

 They do not generate a complete program, but just

a part such as the view, the model, or the storage.

 They are not developed to be integrated together.

This integration is a burden that the user has to

bear.

 They are difficult to configure (Model, View,

Security, Mapping)

 They free the programmer from writing some

code, but do not free him from understanding the

sophisticated infrastructure.

Our solution: eliXir framework

EliXir is an MDA framework based on BPMN

(http://www.bpmn.org/). It takes as input class

diagrams (CD) and Business Process diagrams (BPD),

and generates a complete 3 tier web based application.

Thanks to our eliXir Task Definition Language (TDL),

eliXir can work in just 2 steps: Specify and Deploy.

mailto:ammarj@scs-net.org
http://www.bpmn.org/

2 Elixir main features
 Based on UML diagrams, eliXir stereotypes, and

eliXir semantics, eliXir infers different types of

metadata such as Security metadata, GUI metadata,

Interaction metadata, and Storage metadata,

 Based on its rich Metadata, eliXir can generate Code

or Execution Languages for different platforms.

 It frees administrators from the hard configuration

task by generating configuration from the UML

itself based on eliXir Semantics. This configuration

includes Security, Reporting, GUI, and ORM.

 It separates business logic from techniques.

 It separates non functional requirements from each

other.

 It frees programmers from understanding the

underlying architecture.

 It frees programmers from having to modify any

generated code; instead it allows him to add a kind

of business plug-ins.

 It frees programmers from having to master

sophisticated non functional requirements which are

added by eliXir itself.

3 EliXir main components
Elixir has 4 main components: eliXir Specification

Tool XST, eliXir Generator XG, eliXir Deployment

Tool XDT and eliXir Execution Engine XEE :

 XST: provided with XSE (eliXir Semantic Engine),

XST assists users to specify UML (CD and BPMD).

 XG: allows to generate metadata from UML, and to

generate execution language from metadata.

 XDT: allows user to deploy his application and to

integrate it with other applications in the

environment (business applications, data base,

devices).

 XEE: allows executing the deployed application.

Elixir has already been used to develop e-business

applications such as e-government, web based ERP

and billing systems.

4 EliXir architecture

5 EliXir Specification Tool architecture
eliXir Specification Tool XST takes as input UML class

diagrams and business process diagrams in a format

specific to the design tool. XST contains a visitor that

visits the input diagrams and passes the result to elixir

Semantic Engine which uses a variety of integrity rules

(e.g. class integrity rules, business process integrity

rules... etc.) and elixir Stereotypes to convert the

diagrams to eliXir specific format which will be input to

the Metadata Generator. Integrity rules used by the

semantic engine include business process integrity rules

such as detecting overlapping cycles in addition to class

diagrams integrity rules which include rules such as

detecting fields with unspecified type. The Metadata

Generator then generates basic metadata which is input

to eliXir Generator. Basic Metadata consists of class

diagrams and business process management diagrams

metadata in addition to GUI and external ports metadata.

Those types of metadata are linked together using Data

Object in business process diagrams and TDL (Task

Definition Language). TDL is a set of formal

expressions which are added to the business process

diagrams and class diagrams by the user in order to link

them formally. TDL extends the method concept to

include not only side effects but also user interaction.

Thus, TDL can be of two kinds: an expression that has a

side effect and a GUI TDL which defines interaction

with the user. In order to clarify the role of TDL, we

will provide the following example.

Employee

-lastName

-position

-salary

-status

-name

+changePosition() {tdl=apply[save] on this [!name, !lastName, position]}

+view () {tdl= apply[] on this [!name, !lastName, !salary, !position]}

+computeSalary() {tdl= salary= f ixedSalary+ aw ard - rebate}

We have a class Employee which have the following

attributes: name, lastName, salary and position. This

class has the following operations: computeSalary,

changePosition, and view. ComputeSalary operation is

implemented using a TDL expression that calculates the

salary of the employee. Whereas changePosition and

view are operations that need user interaction so they are

implemented using GUI TDL that creates a GUI through

which the user can change the position of the employee

(in case of changePosition operation) and view his

attributes (in case of view operation). To define which

user has the right to what and when, we need to use a

business process diagram as follow.

The above diagram shows that the direct manager has

the right to add new employees but this operation has to

be validate by general manager. Only the general

manager can change the position of an employee.

6 EliXir Generator
EliXir Generator takes as input Basic Metadata

generated by eliXir Specification tool and infers

semantically high level metadata called Extended

Metadata which consists of security metadata, GUI/

Reports meta data, ORM/DAO metadata and interaction/

IO metadata. eliXir Generator contains eliXir Execution

Language Generator (eliXir EL Generator) which

generates eliXir specific execution language XEL or

other PSM (Platform Specific Model) . The resultant

execution language is then passed to the deployment tool

which can be eliXir deployment tool or any other

deployment tool.

7 EliXir Deployment Tool architecture
eliXir deployment tool XDT takes as input eliXir

Execution Language (XEL) and eliXir Extended

Metadata generated by the XEL generator. XDT has a

knowledge base that contains knowledge acquired from

the user about the operating systems, databases,

application servers and I/O devices. Based on this

knowledge and on the input XEL and Extended

Metadata, the application is deployed.

8 EliXir Execution Engine Architecture
Elixir Execution Engine XEE consists of a number of

engines such as Security Engine, GUI engine, BPM

Engine. XEE takes as input elixir Execution Language

XEL generated by eliXir XEL generator and uses

Extended Metadata to execute the deployed application.

XEE contains a middle ware which is used to interact

with other applications.

9 Conclusion and Future Work

In this paper we have presented eliXir framework. This

framework allows us to build a complete 3 tiers

applications in just two steps specify & deploy. eliXir

can generate an extended meta data basing on some

business rules and on our Task Definition Language.

This extended meta data includes data object model,

security, presentation, interaction, storage. The Task

Definition Language allows us to express an action as

well as an interaction with the user. This is why eliXir

can build a complete application not only one tier. A

future work aims to infer the data object from the

business process and TDL, which allows us to simply the

task of business specification.

References:

[1] MDA Distilled: Principles of Model-Driven

Architecture, Stephen J. Mellor, Kendall Scott,

Axel Uhl, Dirk Weise, Addison Wesley, March 03,

2004. ISBN 0-201-78891-8

[2] http://www.ovum.com

[3] http://www.standishgroup.com

[4] UML source, http:// gentleware.com/

fileadmin/media/synergy/Course/index.htm.

[5] “The Essence of Model Driven Architecture”, Wim

Bast –

www.jaxmagazine.com/itr/online_artikel/psecom,id,548,

nodeid,147.html

[6] RICK HIGHTOWER, “An Introduction to Spring”,

Java Developer's Journal, 2005.

[7] Casey Kochmer, “Introduction to Struts”, JSP Insider

magazine, April 2001.

[8] Peter Varhol, “Applying the MVC Design Pattern

Using Struts”, javapro magazine, may 2002

 [9] Firesmith, Donald G. , Deugo, Dwight , “Applying

Design Patterns in Java," in Java Gems book, Cambridge

University Press, 1998.

[10] Karl Lieberherr, Doug Orleans, and Johan Ovlinger,

“Aspect-Oriented Programming with Adaptive

Methods”, NU-CCS-2001-02, 15 pages.

[11] Martin Fowler, “Inversion of Control Containers

and the Dependency Injection pattern”,

http://martinfowler.com/articles/injection.html

